Role of changes in [Ca2+]i in energy deprivation contracture.

نویسندگان

  • W H Barry
  • G A Peeters
  • C A Rasmussen
  • M J Cunningham
چکیده

Mechanisms of energy deprivation contracture were investigated in cultured chick embryo ventricular cells. In the presence of zero-extracellular-Na+, (choline chloride substitution)-nominal-zero-Ca2+ [( Ca2+] approximately 5 microM), exposure of ventricular cells to 1 mM cyanide (CN) and 20 mM 2-deoxyglucose (2-DG)-zero-glucose solution resulted in the development of a contracture (video motion detector) in 5.9 +/- 0.5 minutes. Early after contracture development, the resupply of extracellular Na+, in the continued presence of CN + 2-DG, resulted in a rapid partial relaxation (t1/2 = 1.9 +/- 0.3 seconds), associated with an increase in 45Ca efflux, presumably due to transsarcolemmal Ca2+ extrusion due to Na+-Ca2+ exchange. Resupply of glucose and removal of CN + 2-DG, in the continued absence of Na+, resulted in an initially slower (t1/2 = 11.6 +/- 2.5 seconds), but more complete relaxation of contracture, which was not associated with increased Ca2+ efflux. Pretreatment with 20 mM caffeine delayed the onset of contracture (9.2 +/- 1.1 minutes) and resulted in a contracture that could not be relaxed by resupply of external Na+ only. Studies using the fluorescent Ca2+ probe indo 1 demonstrated that in zero-Na+-zero-Ca2+ solutions, contracture due to CN + 2-DG was associated with an initial rise in [Ca2+]i but that this did not account for all of contracture force development. In cells exposed to CN + 2-DG in the presence of normal extracellular Na+ and Ca2+ concentrations, a small rise in [Ca2+]i was associated with initial contracture development, consistently preceding the development of a larger accelerated contracture presumably due to ATP depletion.(ABSTRACT TRUNCATED AT 250 WORDS)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition

AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...

متن کامل

The Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition

AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...

متن کامل

Pathogenesis and the role of Ca2+ overload during myocardial ischemia/reperfusion.

To study the regulation of [Na+]i and [Ca2+]i during myocardial ischemia/reperfusion, [Na+]i and [Ca2+]i were measured simultaneously using guinea pig ventricular myocytes which were dual-loaded with SBFI/AM and fluo-3/AM. It was suggested that: (1) [Na+]i increased during metabolic inhibition (MI: 3.3 mM amytal and 5 microM CCCP) by both the activated Na+ influx via Na+/H+ exchange and the sup...

متن کامل

Contracture in isolated adult rat heart cells. Role of Ca2+, ATP, and compartmentation.

Isolated intact quiescent myocytes from the adult rat were used as a model system for investigating the determinants of contracture induced by metabolic deprivation. The model simulated the pattern of contracture and ATP decline seen in the intact heart during ischemia. Three new insights into the contracture process were gained: (1) in the quiescent cell system, the rate of onset of contractur...

متن کامل

L-type Ca2+ channel blockers attenuate electrical changes and Ca2+ rise induced by oxygen/glucose deprivation in cortical neurons.

BACKGROUND AND PURPOSE Experimental evidence supports a major role of increased intracellular calcium [Ca2+]i levels in the induction of neuronal damage during cerebral ischemia. However, the source of Ca2+ rise has not been fully elucidated. To clarify further the role and the origin of Ca2+ in cerebral ischemia, we have studied the effects of various pharmacological agents in an in vitro mode...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 61 5  شماره 

صفحات  -

تاریخ انتشار 1987